Aké sú obmedzenia pri práci s veľkými množinami údajov v rámci strojového učenia?
Pri práci s veľkými súbormi údajov v rámci strojového učenia existuje niekoľko obmedzení, ktoré je potrebné zvážiť, aby sa zabezpečila efektívnosť a účinnosť vyvíjaných modelov. Tieto obmedzenia môžu vyplývať z rôznych aspektov, ako sú výpočtové zdroje, pamäťové obmedzenia, kvalita údajov a zložitosť modelu. Jedno z hlavných obmedzení inštalácie veľkých súborov údajov
- vyšlo v Umelá inteligencia, EITC/AI/GCML Google Cloud Machine Learning, Pokrok v strojovom učení, GCP BigQuery a otvorené súbory údajov
Dá sa bežná neurónová sieť porovnať s funkciou takmer 30 miliárd premenných?
Bežnú neurónovú sieť možno skutočne porovnať s funkciou takmer 30 miliárd premenných. Aby sme pochopili toto porovnanie, musíme zvážiť základné koncepty neurónových sietí a dôsledky veľkého množstva parametrov v modeli. Neurónové siete sú triedou modelov strojového učenia inšpirovaných
- vyšlo v Umelá inteligencia, EITC/AI/DLPP Deep Learning s programami Python a PyTorch, úvod, Úvod do hlbokého učenia s programami Python a Pytorch
Čo je nadmerné vybavenie strojového učenia a prečo k nemu dochádza?
Prepracovanie je bežným problémom strojového učenia, kde model funguje mimoriadne dobre na tréningových údajoch, ale nedokáže zovšeobecniť na nové, neviditeľné údaje. Vyskytuje sa, keď sa model stane príliš zložitým a začne si zapamätávať šum a odľahlé hodnoty v trénovacích údajoch namiesto toho, aby sa učil základné vzorce a vzťahy. In
- vyšlo v Umelá inteligencia, Základy TensorFlow EITC/AI/TFF, Problémy s nadmerným vybavením a nedostatočným vybavením, Riešenie problémov s nadmerným a nedostatočným vybavením modelu - časť 2, Preskúmanie skúšky